## 17 Differential Equations

## Introduction

A differential equation is an equation which contains an unknown function and one of its unknown derivatives. The Goal is to find the unknown function. A simple first order differential equation has the form $y^{\prime}=f(y, x)$.

## Examples:

i) Population growth can be represented with an differential equation:

$$
y^{\prime}(x)=\alpha y(x), \alpha \in \mathbb{R}
$$

Let be $y(0)=y_{0}$ the population at time $x=0$. The solution of this equation is

$$
y(x)=y_{0} e^{\alpha x} .
$$

Test:

$$
\begin{gathered}
y(0)=y_{0} e^{0}=y_{0} \quad \checkmark \\
y^{\prime}(x)=\alpha y_{0} e^{\alpha x}=\alpha y(x)
\end{gathered}
$$

ii) Newtons Law

$$
\begin{aligned}
y(t) & : \text { position of a mass point at time } t \\
y(0)=y_{0} & : \text { position of a mass point at time } 0 \\
v_{0} & : \text { initial velocity } \\
y^{\prime \prime}(t)=-g & : \text { acceleration due to gravity }
\end{aligned}
$$

The solution is the free fall law

$$
y(t)=-\frac{1}{2} g t^{2}+v_{0} t+y_{0}
$$

Definition 1 (Ordinary Differential Equation). Let $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a function. Then

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)=y^{(n)}
$$

is called an ordinary differential equation (ODE) of order n. An n-times continuously differentiable function $y: I \rightarrow \mathbb{R}$ is called solution if it fulfills the $O D E$ for all $x \in I$.

Definition 2 (exact differential equations). Let two differentiable functions $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with continuous derivatives be given. A differential equation of the form

$$
P(x, y) d x+Q(x, y) d y=0
$$

is said to be exact, if

$$
\frac{\partial P(x, y)}{\partial y}=\frac{\partial Q(x, y)}{\partial x}
$$

Solution: There is a function $F(x, y)$ with $F_{x}=P$ and $F_{y}=Q$.

$$
\Rightarrow \quad F(x, y)=c, c \in \mathbb{R} \text { is the implicit solution. }
$$

## Integrating factors:

Some (non-exact) differential equations of the form $P(x, y) d x+Q(x, y) d y=0$ can be made exact by multiplying them with a suitable function $M(x, y)$, the so-called integrating factor.

$$
M(x, y) P(x, y) d x+M(x, y) Q(x, y) d y=0
$$

Theorem 3 (Separation of variables). Suppose a first order ODE can be written in the form

$$
\frac{d y}{d t}=g(x) h(y)
$$

Obviously, all constant functions $y=c$ with $h(y)=0$ are solutions of the $O D E$. If $h(y) \neq 0$, the terms can be re-arranged to

$$
\int \frac{1}{h(y)} d y=\int g(x) d x
$$

Solve this equation for $y$ to compute the remaining solutions of the $O D E$.
Definition 4 (Linear Differential Equation). A linear differential equation (LDE) of order $n$ is an ODE of the form

$$
y^{(n)}+A_{1}(x) y^{(n-1)}+A_{2}(x) y^{(n-2)}+\cdots+A_{n}(x) y=f(x),
$$

where $A_{i}, f: \mathbb{R} \rightarrow \mathbb{R}$ are functions. If $f=0$, the $L D E$ is called homogenous, and inhomogenous otherwise.

Theorem 5. Let

$$
y^{\prime}(x)+a(x) y(x)=0
$$

be a homogenous first order LDE. Then its set of solutions is given by

$$
\left\{y(x)=c e^{-A(x)}, c \in \mathbb{R}\right\},
$$

where $A$ is a primitive of $a .\left(A(x)=\int a(x) d x\right)$

Theorem 6 (Variation of constant). Let

$$
y^{\prime}(x)+a(x) y(x)=f(x)
$$

be an inhomogenous first order LDE. Then its set of solutions is given by

$$
\left\{e^{-A(x)}\left(c+\int f(x) e^{A(x)} d x\right), c \in \mathbb{R}\right\}
$$

where $A$ is a primitive of $a$.

$$
y(x)=e^{-A(x)}\left(y_{0}+\int_{x_{0}}^{x} f(t) e^{A(t)} d t\right)
$$

is a solution of the differential equation satisfying $y\left(x_{0}\right)=y_{0}$.
Definition 7 (Bernoulli differential equations). A differential equation of the form

$$
y^{\prime}+g(x) y=h(x) y^{\alpha}, \quad \alpha \in \mathbb{R} \backslash\{0,1\},
$$

with functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ is called Bernoulli differential equation. Substitution: $z=y^{1-\alpha}$

$$
\Rightarrow \quad z^{\prime}+(1-\alpha) g(x) z=(1-\alpha) h(x)
$$

This is a linear differential equation in $z$ and can be solved with the formulas above.
Definition 8 (Riccati differential equations). A differential equation of the form

$$
y^{\prime}+g(x) y+h(x) y^{2}=f(x)
$$

with functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ is called Riccati differential equation. $y_{s}$ shall be a special solution of this differential equation.
Substitution: $z=\frac{1}{y-y_{s}}$

$$
\Rightarrow \quad z^{\prime}-\left[g(x)+2 h(x) y_{s}\right] z=h(x)
$$

This is a linear differential equation in $z$ and can be solved with the formulas above. Backsubstituting yields $y=y_{s}+\frac{1}{z}$.

Definition 9 (matrix differential equation). Let

$$
\mathbf{A}:=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) \quad i, j=1 \ldots, n
$$

an $n \times n$ matrix, of which all elements are constants. Then

$$
\mathbf{y}^{\prime}(t)=\mathbf{A y}(t), \quad \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)
$$

is called a first order matrix differential equation (MDE)

Theorem 10. Let $\mathbf{y}^{\prime}=A \mathbf{y}$ be a first order $M D E$, where $A$ is an $(n \times n)$-matrix with real entries. If $A$ has $n$ different eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ with corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, then the solution set of the MDE is given by

$$
\left\{\mathbf{y}(t)=\sum_{k=1}^{n} a_{k} \mathbf{v}_{k} e^{\lambda_{k} t}: a_{k} \in \mathbb{R}\right\} .
$$

(If initial conditions are given, the coefficient $a_{k}$ may be computed accordingly.) For an arbitrary matrix $A$, the solution set can be computed by using its generalized eigenvectors.

